BrighterFatterKernelSolveTask#
- class lsst.cp.pipe.BrighterFatterKernelSolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#
Bases:
PipelineTaskMeasure appropriate Brighter-Fatter Kernel from the PTC dataset.
Methods Summary
averageCorrelations(xCorrList, name)Average input correlations.
quadraticCorrelations(xCorrList, fluxList, name)Measure a quadratic correlation model.
run(inputPtc, dummy, camera, inputDims)Combine covariance information from PTC into brighter-fatter kernels.
runQuantum(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along.
sampleCovModel(fluxes, noiseMatrix, gain, ...)Sample the correlation model and measure widetile{C}_{ij} from Broughton et al. 2023 (eq.
successiveOverRelax(source[, maxIter, eLevel])An implementation of the successive over relaxation (SOR) method.
Methods Documentation
- averageCorrelations(xCorrList, name)#
Average input correlations.
Parameters#
- xCorrList
list[numpy.array] List of cross-correlations. These are expected to be square arrays.
- name
str Name for log messages.
Returns#
- meanXcorr
numpy.array, (N, N) The averaged cross-correlation.
- xCorrList
- quadraticCorrelations(xCorrList, fluxList, name)#
Measure a quadratic correlation model.
Parameters#
- xCorrList
list[numpy.array] List of cross-correlations. These are expected to be square arrays.
- fluxList
numpy.array, (Nflux,) Associated list of fluxes.
- name
str Name for log messages.
Returns#
- meanXcorr
numpy.array, (N, N) The averaged cross-correlation.
- xCorrList
- run(inputPtc, dummy, camera, inputDims)#
Combine covariance information from PTC into brighter-fatter kernels.
Parameters#
- inputPtc
lsst.ip.isr.PhotonTransferCurveDataset PTC data containing per-amplifier covariance measurements.
- dummy
lsst.afw.image.Exposure The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option.
- camera
lsst.afw.cameraGeom.Camera Camera to use for camera geometry information.
- inputDims
lsst.daf.butler.DataCoordinateordict DataIds to use to populate the output calibration.
Returns#
- results
lsst.pipe.base.Struct The resulst struct containing:
outputBfkResulting Brighter-Fatter Kernel (
lsst.ip.isr.BrighterFatterKernel).
- inputPtc
- runQuantum(butlerQC, inputRefs, outputRefs)#
Ensure that the input and output dimensions are passed along.
Parameters#
- butlerQC
lsst.daf.butler.QuantumContext Butler to operate on.
- inputRefs
lsst.pipe.base.InputQuantizedConnection Input data refs to load.
- ouptutRefs
lsst.pipe.base.OutputQuantizedConnection Output data refs to persist.
- butlerQC
- sampleCovModel(fluxes, noiseMatrix, gain, covModelList, flux, name)#
Sample the correlation model and measure widetile{C}_{ij} from Broughton et al. 2023 (eq. 4)
Parameters#
- fluxes
list[float] List of fluxes (in ADU)
- noiseMatrix
numpy.array, (N, N) Noise matrix
- gain
float Amplifier gain
- covModelList
numpy.array, (N, N) List of covariance model matrices. These are expected to be square arrays.
- flux
float Flux in electrons at which to sample the covariance model.
- name
str Name for log messages.
Returns#
- covTilde
numpy.array, (N, N) The calculated C-tilde from Broughton et al. 2023 (eq. 4).
- fluxes
- successiveOverRelax(source, maxIter=None, eLevel=None)#
An implementation of the successive over relaxation (SOR) method.
A numerical method for solving a system of linear equations with faster convergence than the Gauss-Seidel method.
Parameters#
- source
numpy.ndarray, (N, N) The input array.
- maxIter
int, optional Maximum number of iterations to attempt before aborting.
- eLevel
float, optional The target error level at which we deem convergence to have occurred.
Returns#
- output
numpy.ndarray, (N, N) The solution.
- source