CrosstalkSolveTask#
- class lsst.cp.pipe.CrosstalkSolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#
Bases:
PipelineTaskTask to solve crosstalk from pixel ratios.
Methods Summary
debugRatios(stepname, ratios, i, j[, coeff, ...])Utility function to examine the final CT ratio set.
filterCrosstalkCalib(inCalib)Apply valid constraints to the measured values.
measureCrosstalkCoefficients(ratios, ...)Measure crosstalk coefficients from the ratios.
run(inputRatios[, inputFluxes, camera, ...])Combine ratios to produce crosstalk coefficients.
runQuantum(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along.
Methods Documentation
- debugRatios(stepname, ratios, i, j, coeff=0.0, valid=False)#
Utility function to examine the final CT ratio set.
Parameters#
- stepname
str State of processing to view.
- ratios
dict[dict[numpy.ndarray]] Array of measured CT ratios, indexed by source/victim amplifier. These arrays are one-dimensional.
- i
str Index of the target amplifier.
- j
str Index of the source amplifier.
- coeff
float, optional Coefficient calculated to plot along with the simple mean.
- valid
bool, optional Validity to be added to the plot title.
- stepname
- static filterCrosstalkCalib(inCalib)#
Apply valid constraints to the measured values.
Any measured coefficient that is determined to be invalid is set to zero, and has the error set to nan. The validation is determined by checking that the measured coefficient is larger than the calculated standard error of the mean.
Parameters#
- inCalib
lsst.ip.isr.CrosstalkCalib Input calibration to filter.
Returns#
- outCalib
lsst.ip.isr.CrosstalkCalib Filtered calibration.
- inCalib
- measureCrosstalkCoefficients(ratios, ordering, rejIter, rejSigma)#
Measure crosstalk coefficients from the ratios.
Given a list of ratios for each target/source amp combination, we measure a sigma clipped mean and error.
The coefficient errors returned are the standard deviation of the final set of clipped input ratios.
Parameters#
- ratios
dict[dict[numpy.ndarray]] Catalog of arrays of ratios. The ratio arrays are one-dimensional
- ordering
list[str] or None List to use as a mapping between amplifier names (the elements of the list) and their position in the output calibration (the matching index of the list). If no ordering is supplied, the order of the keys in the ratio catalog is used.
- rejIter
int Number of rejection iterations.
- rejSigma
float Rejection threshold (sigma).
Returns#
- calib
lsst.ip.isr.CrosstalkCalib The output crosstalk calibration.
- ratios
- run(inputRatios, inputFluxes=None, camera=None, inputDims=None, outputDims=None)#
Combine ratios to produce crosstalk coefficients.
Parameters#
- inputRatios
list[dict[dict[dict[dict[list]]]]] A list of nested dictionaries of ratios indexed by target and source chip, then by target and source amplifier.
- inputFluxes
list[dict[dict[list]]] A list of nested dictionaries of source pixel fluxes, indexed by source chip and amplifier.
- camera
lsst.afw.cameraGeom.Camera Input camera.
- inputDims
list[lsst.daf.butler.DataCoordinate] DataIds to use to construct provenance.
- outputDims
list[lsst.daf.butler.DataCoordinate] DataIds to use to populate the output calibration.
Returns#
- results
lsst.pipe.base.Struct The results struct containing:
outputCrosstalkFinal crosstalk calibration (
lsst.ip.isr.CrosstalkCalib).outputProvenanceProvenance data for the new calibration (
lsst.ip.isr.IsrProvenance).
Raises#
- RuntimeError
Raised if the input data contains multiple target detectors.
- inputRatios
- runQuantum(butlerQC, inputRefs, outputRefs)#
Ensure that the input and output dimensions are passed along.
Parameters#
- butlerQC
lsst.daf.butler.QuantumContext Butler to operate on.
- inputRefs
lsst.pipe.base.InputQuantizedConnection Input data refs to load.
- ouptutRefs
lsst.pipe.base.OutputQuantizedConnection Output data refs to persist.
- butlerQC