CpFlatFitGradientsTask#
- class lsst.cp.pipe.CpFlatFitGradientsTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#
Bases:
PipelineTaskTask to measure gradients on sky/dome flats.
Methods Summary
run(*, camera, input_flat_handle_dict, ...)Run the CpFlatFitGradientsTask.
runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.Methods Documentation
- run(*, camera, input_flat_handle_dict, input_defect_handle_dict, binned_image=None)#
Run the CpFlatFitGradientsTask.
This task will fit full focal-plane gradients. See
lsst.cp.pipe.utils.FlatGradientFitterfor details.The return struct will contain
output_gradientif do_reference_gradient is False, oroutput_reference_gradientotherwise.Parameters#
- camera
lsst.afw.cameraGeom.Camera Camera object.
- input_flat_handle_dict
dict[int, Dictionary of input flat handles, keyed by detector.
- input_defect_handle_dict
dict[int, Dictionary of input defect handles, keyed by detector.
- binned_image
np.ndarray, optional Binned image from a previous run of the task. This will take precedence over the input handles, for easy re-use. This may be used for debugging, or if CpFlatFitGradientsTask is used as a sub-task.
Returns#
- struct
lsst.pipe.base.Struct - Output structure with:
output_gradient:lsst.ip.isr.FlatGradientoroutput_reference_gradient:lsst.ip.isr.FlatGradientmodel_residual_plot:matplotlib.Figureradial_model_plot:matplotlib.Figurebinned_image:np.ndarray
- camera
- runQuantum(butlerQC, inputRefs, outputRefs)#
Do butler IO and transform to provide in memory objects for tasks
runmethod.Parameters#
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC