GaussianProcessTreegp#
- class lsst.meas.algorithms.GaussianProcessTreegp(std=1.0, correlation_length=1.0, white_noise=0.0, mean=0.0)#
Bases:
objectGaussian Process Treegp class for Gaussian Process interpolation.
The basic GP regression, which uses Cholesky decomposition.
Parameters:#
- std
float, optional Standard deviation of the Gaussian Process kernel. Default is 1.0.
- correlation_length
float, optional Correlation length of the Gaussian Process kernel. Default is 1.0.
- white_noise
float, optional White noise level of the Gaussian Process. Default is 0.0.
- mean
float, optional Mean value of the Gaussian Process. Default is 0.0.
Methods Summary
fit(x_train, y_train)Fit the Gaussian Process to the given training data.
predict(x_predict)Predict the target values for the given input features.
Methods Documentation
- std