SourceDetectionConfig#
- class lsst.meas.algorithms.SourceDetectionConfig(*args, **kw)#
Bases:
ConfigConfiguration parameters for the SourceDetectionTask
Attributes Summary
Fiddle factor to add to the background; debugging only (
float, default0.0)Background re-estimation; ignored if reEstimateBackground false (
ConfigurableInstance, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)Grow all footprints at the same time? This allows disconnected footprints to merge.
Convert from a photometrically flat image to one suitable for background subtraction? Only used if reEstimateBackground is True.If True, then a backgroundToPhotometricRatio must be supplied to the task run method.
Enable temporary local background subtraction? (see tempLocalBackground) (
bool, defaultTrue)Do temporary wide (large-scale) background subtraction before footprint detection? (
bool, defaultFalse)Mask planes to exclude when detecting sources.
Multiplier on thresholdValue for whether a source is included in the output catalog.
Grow pixels as isotropically as possible? If False, use a Manhattan metric instead.
detected sources with fewer than the specified number of pixels will be ignored (
int, default1)The maximum number of peaks in a Footprint before trying to replace its peaks using the temporary local background (
int, default1)Multiple of PSF RMS size to use for convolution kernel bounding box size; note that this is not a half-size.
Grow detections by nSigmaToGrow * [PSF RMS width]; if 0 then do not grow (
float, default2.4)Estimate the background again after final source detection? (
bool, defaultTrue)Grow detections to set the image mask bits, but return the original (not-grown) footprints (
bool, defaultFalse)Mask planes to ignore when calculating statistics of image (for thresholdType=stdev) (
List, default['BAD', 'SAT', 'EDGE', 'NO_DATA'])A local (small-scale), temporary background estimation step run between detecting above-threshold regions and detecting the peaks within them; used to avoid detecting spuerious peaks in the wings.
A wide (large-scale) background estimation and removal before footprint and peak detection.
Specifies whether to detect positive, or negative sources, or both.
Specifies the meaning of thresholdValue.
Threshold for detecting footprints; exact meaning and units depend on thresholdType.
Methods Summary
Subclass hook for computing defaults.
Attributes Documentation
- adjustBackground#
Fiddle factor to add to the background; debugging only (
float, default0.0)
- background#
Background re-estimation; ignored if reEstimateBackground false (
ConfigurableInstance, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)
- combinedGrow#
Grow all footprints at the same time? This allows disconnected footprints to merge. (
bool, defaultTrue)
- doApplyFlatBackgroundRatio#
Convert from a photometrically flat image to one suitable for background subtraction? Only used if reEstimateBackground is True.If True, then a backgroundToPhotometricRatio must be supplied to the task run method. (
bool, defaultFalse)
- doTempLocalBackground#
Enable temporary local background subtraction? (see tempLocalBackground) (
bool, defaultTrue)
- doTempWideBackground#
Do temporary wide (large-scale) background subtraction before footprint detection? (
bool, defaultFalse)
- excludeMaskPlanes#
Mask planes to exclude when detecting sources. (
List, default[])
- includeThresholdMultiplier#
Multiplier on thresholdValue for whether a source is included in the output catalog. For example, thresholdValue=5, includeThresholdMultiplier=10, thresholdType=’pixel_stdev’ results in a catalog of sources at >50 sigma with the detection mask and footprints including pixels >5 sigma. (
float, default1.0)Valid Range = [0.0,inf)
- isotropicGrow#
Grow pixels as isotropically as possible? If False, use a Manhattan metric instead. (
bool, defaultTrue)
- minPixels#
detected sources with fewer than the specified number of pixels will be ignored (
int, default1)Valid Range = [0,inf)
- nPeaksMaxSimple#
The maximum number of peaks in a Footprint before trying to replace its peaks using the temporary local background (
int, default1)
- nSigmaForKernel#
Multiple of PSF RMS size to use for convolution kernel bounding box size; note that this is not a half-size. The size will be rounded up to the nearest odd integer (
float, default7.0)
- nSigmaToGrow#
Grow detections by nSigmaToGrow * [PSF RMS width]; if 0 then do not grow (
float, default2.4)
- reEstimateBackground#
Estimate the background again after final source detection? (
bool, defaultTrue)
- returnOriginalFootprints#
Grow detections to set the image mask bits, but return the original (not-grown) footprints (
bool, defaultFalse)
- statsMask#
Mask planes to ignore when calculating statistics of image (for thresholdType=stdev) (
List, default['BAD', 'SAT', 'EDGE', 'NO_DATA'])
- tempLocalBackground#
A local (small-scale), temporary background estimation step run between detecting above-threshold regions and detecting the peaks within them; used to avoid detecting spuerious peaks in the wings. (
ConfigurableInstance, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)
- tempWideBackground#
A wide (large-scale) background estimation and removal before footprint and peak detection. It is added back into the image after detection. The purpose is to suppress very large footprints (e.g., from large artifacts) that the deblender may choke on. (
ConfigurableInstance, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)
- thresholdPolarity#
Specifies whether to detect positive, or negative sources, or both. (
str, default'positive')Allowed values:
'positive'detect only positive sources
'negative'detect only negative sources
'both'detect both positive and negative sources
- thresholdType#
Specifies the meaning of thresholdValue. (
str, default'pixel_stdev')Allowed values:
'variance'threshold applied to image variance
'stdev'threshold applied to image std deviation
'value'threshold applied to image value
'pixel_stdev'threshold applied to per-pixel std deviation
- thresholdValue#
Threshold for detecting footprints; exact meaning and units depend on thresholdType. (
float, default5.0)Valid Range = [0.0,inf)
Methods Documentation