HealSparsePropertyMapConnections#

class lsst.pipe.tasks.healSparseMapping.HealSparsePropertyMapConnections(*, config: PipelineTaskConfig | None = None)#

Bases: PipelineTaskConnections

Attributes Summary

allConnections

Mapping holding all connection attributes.

coadd_exposures

Class used for declaring PipelineTask input connections.

dcr_ddec_map_max

Connection for output dataset.

dcr_ddec_map_mean

Connection for output dataset.

dcr_ddec_map_min

Connection for output dataset.

dcr_ddec_map_sum

Connection for output dataset.

dcr_ddec_map_weighted_mean

Connection for output dataset.

dcr_dra_map_max

Connection for output dataset.

dcr_dra_map_mean

Connection for output dataset.

dcr_dra_map_min

Connection for output dataset.

dcr_dra_map_sum

Connection for output dataset.

dcr_dra_map_weighted_mean

Connection for output dataset.

dcr_e1_map_max

Connection for output dataset.

dcr_e1_map_mean

Connection for output dataset.

dcr_e1_map_min

Connection for output dataset.

dcr_e1_map_sum

Connection for output dataset.

dcr_e1_map_weighted_mean

Connection for output dataset.

dcr_e2_map_max

Connection for output dataset.

dcr_e2_map_mean

Connection for output dataset.

dcr_e2_map_min

Connection for output dataset.

dcr_e2_map_sum

Connection for output dataset.

dcr_e2_map_weighted_mean

Connection for output dataset.

defaultTemplates

deprecatedTemplates

dimensions

Set of dimension names that define the unit of work for this task.

epoch_map_max

Connection for output dataset.

epoch_map_mean

Connection for output dataset.

epoch_map_min

Connection for output dataset.

epoch_map_sum

Connection for output dataset.

epoch_map_weighted_mean

Connection for output dataset.

exposure_time_map_max

Connection for output dataset.

exposure_time_map_mean

Connection for output dataset.

exposure_time_map_min

Connection for output dataset.

exposure_time_map_sum

Connection for output dataset.

exposure_time_map_weighted_mean

Connection for output dataset.

initInputs

Set with the names of all InitInput connection attributes.

initOutputs

Set with the names of all InitOutput connection attributes.

input_maps

Class used for declaring PipelineTask input connections.

inputs

Set with the names of all connectionTypes.Input connection attributes.

n_exposure_map_max

Connection for output dataset.

n_exposure_map_mean

Connection for output dataset.

n_exposure_map_min

Connection for output dataset.

n_exposure_map_sum

Connection for output dataset.

n_exposure_map_weighted_mean

Connection for output dataset.

name

outputs

Set with the names of all Output connection attributes.

prerequisiteInputs

Set with the names of all PrerequisiteInput connection attributes.

psf_e1_map_max

Connection for output dataset.

psf_e1_map_mean

Connection for output dataset.

psf_e1_map_min

Connection for output dataset.

psf_e1_map_sum

Connection for output dataset.

psf_e1_map_weighted_mean

Connection for output dataset.

psf_e2_map_max

Connection for output dataset.

psf_e2_map_mean

Connection for output dataset.

psf_e2_map_min

Connection for output dataset.

psf_e2_map_sum

Connection for output dataset.

psf_e2_map_weighted_mean

Connection for output dataset.

psf_maglim_map_max

Connection for output dataset.

psf_maglim_map_mean

Connection for output dataset.

psf_maglim_map_min

Connection for output dataset.

psf_maglim_map_sum

Connection for output dataset.

psf_maglim_map_weighted_mean

Connection for output dataset.

psf_size_map_max

Connection for output dataset.

psf_size_map_mean

Connection for output dataset.

psf_size_map_min

Connection for output dataset.

psf_size_map_sum

Connection for output dataset.

psf_size_map_weighted_mean

Connection for output dataset.

sky_background_map_max

Connection for output dataset.

sky_background_map_mean

Connection for output dataset.

sky_background_map_min

Connection for output dataset.

sky_background_map_sum

Connection for output dataset.

sky_background_map_weighted_mean

Connection for output dataset.

sky_map

Class used for declaring PipelineTask input connections.

sky_noise_map_max

Connection for output dataset.

sky_noise_map_mean

Connection for output dataset.

sky_noise_map_min

Connection for output dataset.

sky_noise_map_sum

Connection for output dataset.

sky_noise_map_weighted_mean

Connection for output dataset.

visit_summaries

Class used for declaring PipelineTask input connections.

Attributes Documentation

allConnections: Mapping[str, BaseConnection] = {'coadd_exposures': Input(name='{coaddName}Coadd', storageClass='ExposureF', doc='Coadded exposures associated with input_maps', multiple=True, deprecated=None, _deprecation_context='', dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False, deferLoad=True, minimum=1, deferGraphConstraint=False, deferBinding=False), 'dcr_ddec_map_max': Output(name='{coaddName}Coadd_dcr_ddec_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_mean': Output(name='{coaddName}Coadd_dcr_ddec_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_min': Output(name='{coaddName}Coadd_dcr_ddec_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_sum': Output(name='{coaddName}Coadd_dcr_ddec_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_ddec_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_max': Output(name='{coaddName}Coadd_dcr_dra_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_mean': Output(name='{coaddName}Coadd_dcr_dra_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_min': Output(name='{coaddName}Coadd_dcr_dra_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_sum': Output(name='{coaddName}Coadd_dcr_dra_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_dra_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_max': Output(name='{coaddName}Coadd_dcr_e1_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_mean': Output(name='{coaddName}Coadd_dcr_e1_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_min': Output(name='{coaddName}Coadd_dcr_e1_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_sum': Output(name='{coaddName}Coadd_dcr_e1_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_e1_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_max': Output(name='{coaddName}Coadd_dcr_e2_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_mean': Output(name='{coaddName}Coadd_dcr_e2_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_min': Output(name='{coaddName}Coadd_dcr_e2_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_sum': Output(name='{coaddName}Coadd_dcr_e2_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_e2_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_max': Output(name='{coaddName}Coadd_epoch_map_max', storageClass='HealSparseMap', doc='Maximum-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_mean': Output(name='{coaddName}Coadd_epoch_map_mean', storageClass='HealSparseMap', doc='Mean-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_min': Output(name='{coaddName}Coadd_epoch_map_min', storageClass='HealSparseMap', doc='Minimum-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_sum': Output(name='{coaddName}Coadd_epoch_map_sum', storageClass='HealSparseMap', doc='Sum-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_weighted_mean': Output(name='{coaddName}Coadd_epoch_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_max': Output(name='{coaddName}Coadd_exposure_time_map_max', storageClass='HealSparseMap', doc='Maximum-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_mean': Output(name='{coaddName}Coadd_exposure_time_map_mean', storageClass='HealSparseMap', doc='Mean-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_min': Output(name='{coaddName}Coadd_exposure_time_map_min', storageClass='HealSparseMap', doc='Minimum-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_sum': Output(name='{coaddName}Coadd_exposure_time_map_sum', storageClass='HealSparseMap', doc='Sum-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_weighted_mean': Output(name='{coaddName}Coadd_exposure_time_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'input_maps': Input(name='{coaddName}Coadd_inputMap', storageClass='HealSparseMap', doc='Healsparse bit-wise coadd input maps', multiple=True, deprecated=None, _deprecation_context='', dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False, deferLoad=True, minimum=1, deferGraphConstraint=False, deferBinding=False), 'n_exposure_map_max': Output(name='{coaddName}Coadd_n_exposure_map_max', storageClass='HealSparseMap', doc='Maximum-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_mean': Output(name='{coaddName}Coadd_n_exposure_map_mean', storageClass='HealSparseMap', doc='Mean-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_min': Output(name='{coaddName}Coadd_n_exposure_map_min', storageClass='HealSparseMap', doc='Minimum-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_sum': Output(name='{coaddName}Coadd_n_exposure_map_sum', storageClass='HealSparseMap', doc='Sum-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_weighted_mean': Output(name='{coaddName}Coadd_n_exposure_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_max': Output(name='{coaddName}Coadd_psf_e1_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_mean': Output(name='{coaddName}Coadd_psf_e1_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_min': Output(name='{coaddName}Coadd_psf_e1_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_sum': Output(name='{coaddName}Coadd_psf_e1_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_weighted_mean': Output(name='{coaddName}Coadd_psf_e1_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_max': Output(name='{coaddName}Coadd_psf_e2_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_mean': Output(name='{coaddName}Coadd_psf_e2_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_min': Output(name='{coaddName}Coadd_psf_e2_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_sum': Output(name='{coaddName}Coadd_psf_e2_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_weighted_mean': Output(name='{coaddName}Coadd_psf_e2_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_max': Output(name='{coaddName}Coadd_psf_maglim_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_mean': Output(name='{coaddName}Coadd_psf_maglim_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_min': Output(name='{coaddName}Coadd_psf_maglim_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_sum': Output(name='{coaddName}Coadd_psf_maglim_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_weighted_mean': Output(name='{coaddName}Coadd_psf_maglim_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_max': Output(name='{coaddName}Coadd_psf_size_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_mean': Output(name='{coaddName}Coadd_psf_size_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_min': Output(name='{coaddName}Coadd_psf_size_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_sum': Output(name='{coaddName}Coadd_psf_size_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_weighted_mean': Output(name='{coaddName}Coadd_psf_size_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_max': Output(name='{coaddName}Coadd_sky_background_map_max', storageClass='HealSparseMap', doc='Maximum-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_mean': Output(name='{coaddName}Coadd_sky_background_map_mean', storageClass='HealSparseMap', doc='Mean-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_min': Output(name='{coaddName}Coadd_sky_background_map_min', storageClass='HealSparseMap', doc='Minimum-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_sum': Output(name='{coaddName}Coadd_sky_background_map_sum', storageClass='HealSparseMap', doc='Sum-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_weighted_mean': Output(name='{coaddName}Coadd_sky_background_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_map': Input(name='skyMap', storageClass='SkyMap', doc='Input definition of geometry/bbox and projection/wcs for coadded exposures', multiple=False, deprecated=None, _deprecation_context='', dimensions=('skymap',), isCalibration=False, deferLoad=False, minimum=1, deferGraphConstraint=False, deferBinding=False), 'sky_noise_map_max': Output(name='{coaddName}Coadd_sky_noise_map_max', storageClass='HealSparseMap', doc='Maximum-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_mean': Output(name='{coaddName}Coadd_sky_noise_map_mean', storageClass='HealSparseMap', doc='Mean-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_min': Output(name='{coaddName}Coadd_sky_noise_map_min', storageClass='HealSparseMap', doc='Minimum-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_sum': Output(name='{coaddName}Coadd_sky_noise_map_sum', storageClass='HealSparseMap', doc='Sum-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_weighted_mean': Output(name='{coaddName}Coadd_sky_noise_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'visit_summaries': Input(name='finalVisitSummary', storageClass='ExposureCatalog', doc='Visit summary tables with aggregated statistics', multiple=True, deprecated=None, _deprecation_context='', dimensions=('instrument', 'visit'), isCalibration=False, deferLoad=True, minimum=1, deferGraphConstraint=False, deferBinding=False)}#

Mapping holding all connection attributes.

This is a read-only view that is automatically updated when connection attributes are added, removed, or replaced in __init__. It is also updated after __init__ completes to reflect changes in inputs, prerequisiteInputs, outputs, initInputs, and initOutputs.

coadd_exposures#

Class used for declaring PipelineTask input connections.

Attributes#

namestr

The default name used to identify the dataset type.

storageClassstr

The storage class used when (un)/persisting the dataset type.

multiplebool

Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with multiple=True with the same dimensions may want to implement PipelineTaskConnections.adjustQuantum to ensure those datasets are consistent (i.e. zip-iterable) in PipelineTask.runQuantum and notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.

dimensionsiterable of str

The lsst.daf.butler.Butler lsst.daf.butler.Registry dimensions used to identify the dataset type identified by the specified name.

deferLoadbool

Indicates that this dataset type will be loaded as a lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.

minimumbool

Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of PipelineTaskConnections.adjustQuantum, which raises NoWorkFound if the minimum is not met for Input connections (causing the quantum to be pruned, skipped, or never created, depending on the context), and FileNotFoundError for PrerequisiteInput connections (causing QuantumGraph generation to fail). PipelineTask implementations may provide custom adjustQuantum implementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.

deferGraphConstraintbool, optional

If True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.

deferBindingbool, optional

If True, the dataset will not be automatically included in the pipeline graph, deferGraphConstraint is implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.

Raises#

TypeError

Raised if minimum is greater than one but multiple=False.

NotImplementedError

Raised if minimum is zero for a regular Input connection; this is not currently supported by our QuantumGraph generation algorithm.

dcr_ddec_map_max#

Connection for output dataset.

dcr_ddec_map_mean#

Connection for output dataset.

dcr_ddec_map_min#

Connection for output dataset.

dcr_ddec_map_sum#

Connection for output dataset.

dcr_ddec_map_weighted_mean#

Connection for output dataset.

dcr_dra_map_max#

Connection for output dataset.

dcr_dra_map_mean#

Connection for output dataset.

dcr_dra_map_min#

Connection for output dataset.

dcr_dra_map_sum#

Connection for output dataset.

dcr_dra_map_weighted_mean#

Connection for output dataset.

dcr_e1_map_max#

Connection for output dataset.

dcr_e1_map_mean#

Connection for output dataset.

dcr_e1_map_min#

Connection for output dataset.

dcr_e1_map_sum#

Connection for output dataset.

dcr_e1_map_weighted_mean#

Connection for output dataset.

dcr_e2_map_max#

Connection for output dataset.

dcr_e2_map_mean#

Connection for output dataset.

dcr_e2_map_min#

Connection for output dataset.

dcr_e2_map_sum#

Connection for output dataset.

dcr_e2_map_weighted_mean#

Connection for output dataset.

defaultTemplates = {'calexpType': '', 'coaddName': 'deep'}#
deprecatedTemplates = {}#
dimensions: set[str] = {'band', 'skymap', 'tract'}#

Set of dimension names that define the unit of work for this task.

Required and implied dependencies will automatically be expanded later and need not be provided.

This may be replaced or modified in __init__ to change the dimensions of the task. After __init__ it will be a frozenset and may not be replaced.

epoch_map_max#

Connection for output dataset.

epoch_map_mean#

Connection for output dataset.

epoch_map_min#

Connection for output dataset.

epoch_map_sum#

Connection for output dataset.

epoch_map_weighted_mean#

Connection for output dataset.

exposure_time_map_max#

Connection for output dataset.

exposure_time_map_mean#

Connection for output dataset.

exposure_time_map_min#

Connection for output dataset.

exposure_time_map_sum#

Connection for output dataset.

exposure_time_map_weighted_mean#

Connection for output dataset.

initInputs: set[str] = frozenset({})#

Set with the names of all InitInput connection attributes.

See inputs for additional information.

initOutputs: set[str] = frozenset({})#

Set with the names of all InitOutput connection attributes.

See inputs for additional information.

input_maps#

Class used for declaring PipelineTask input connections.

Attributes#

namestr

The default name used to identify the dataset type.

storageClassstr

The storage class used when (un)/persisting the dataset type.

multiplebool

Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with multiple=True with the same dimensions may want to implement PipelineTaskConnections.adjustQuantum to ensure those datasets are consistent (i.e. zip-iterable) in PipelineTask.runQuantum and notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.

dimensionsiterable of str

The lsst.daf.butler.Butler lsst.daf.butler.Registry dimensions used to identify the dataset type identified by the specified name.

deferLoadbool

Indicates that this dataset type will be loaded as a lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.

minimumbool

Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of PipelineTaskConnections.adjustQuantum, which raises NoWorkFound if the minimum is not met for Input connections (causing the quantum to be pruned, skipped, or never created, depending on the context), and FileNotFoundError for PrerequisiteInput connections (causing QuantumGraph generation to fail). PipelineTask implementations may provide custom adjustQuantum implementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.

deferGraphConstraintbool, optional

If True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.

deferBindingbool, optional

If True, the dataset will not be automatically included in the pipeline graph, deferGraphConstraint is implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.

Raises#

TypeError

Raised if minimum is greater than one but multiple=False.

NotImplementedError

Raised if minimum is zero for a regular Input connection; this is not currently supported by our QuantumGraph generation algorithm.

inputs: set[str] = frozenset({'coadd_exposures', 'input_maps', 'sky_map', 'visit_summaries'})#

Set with the names of all connectionTypes.Input connection attributes.

This is updated automatically as class attributes are added, removed, or replaced in __init__. Removing entries from this set will cause those connections to be removed after __init__ completes, but this is supported only for backwards compatibility; new code should instead just delete the collection attributed directly. After __init__ this will be a frozenset and may not be replaced.

n_exposure_map_max#

Connection for output dataset.

n_exposure_map_mean#

Connection for output dataset.

n_exposure_map_min#

Connection for output dataset.

n_exposure_map_sum#

Connection for output dataset.

n_exposure_map_weighted_mean#

Connection for output dataset.

name = 'epoch'#
outputs: set[str] = frozenset({'dcr_ddec_map_max', 'dcr_ddec_map_mean', 'dcr_ddec_map_min', 'dcr_ddec_map_sum', 'dcr_ddec_map_weighted_mean', 'dcr_dra_map_max', 'dcr_dra_map_mean', 'dcr_dra_map_min', 'dcr_dra_map_sum', 'dcr_dra_map_weighted_mean', 'dcr_e1_map_max', 'dcr_e1_map_mean', 'dcr_e1_map_min', 'dcr_e1_map_sum', 'dcr_e1_map_weighted_mean', 'dcr_e2_map_max', 'dcr_e2_map_mean', 'dcr_e2_map_min', 'dcr_e2_map_sum', 'dcr_e2_map_weighted_mean', 'epoch_map_max', 'epoch_map_mean', 'epoch_map_min', 'epoch_map_sum', 'epoch_map_weighted_mean', 'exposure_time_map_max', 'exposure_time_map_mean', 'exposure_time_map_min', 'exposure_time_map_sum', 'exposure_time_map_weighted_mean', 'n_exposure_map_max', 'n_exposure_map_mean', 'n_exposure_map_min', 'n_exposure_map_sum', 'n_exposure_map_weighted_mean', 'psf_e1_map_max', 'psf_e1_map_mean', 'psf_e1_map_min', 'psf_e1_map_sum', 'psf_e1_map_weighted_mean', 'psf_e2_map_max', 'psf_e2_map_mean', 'psf_e2_map_min', 'psf_e2_map_sum', 'psf_e2_map_weighted_mean', 'psf_maglim_map_max', 'psf_maglim_map_mean', 'psf_maglim_map_min', 'psf_maglim_map_sum', 'psf_maglim_map_weighted_mean', 'psf_size_map_max', 'psf_size_map_mean', 'psf_size_map_min', 'psf_size_map_sum', 'psf_size_map_weighted_mean', 'sky_background_map_max', 'sky_background_map_mean', 'sky_background_map_min', 'sky_background_map_sum', 'sky_background_map_weighted_mean', 'sky_noise_map_max', 'sky_noise_map_mean', 'sky_noise_map_min', 'sky_noise_map_sum', 'sky_noise_map_weighted_mean'})#

Set with the names of all Output connection attributes.

See inputs for additional information.

prerequisiteInputs: set[str] = frozenset({})#

Set with the names of all PrerequisiteInput connection attributes.

See inputs for additional information.

psf_e1_map_max#

Connection for output dataset.

psf_e1_map_mean#

Connection for output dataset.

psf_e1_map_min#

Connection for output dataset.

psf_e1_map_sum#

Connection for output dataset.

psf_e1_map_weighted_mean#

Connection for output dataset.

psf_e2_map_max#

Connection for output dataset.

psf_e2_map_mean#

Connection for output dataset.

psf_e2_map_min#

Connection for output dataset.

psf_e2_map_sum#

Connection for output dataset.

psf_e2_map_weighted_mean#

Connection for output dataset.

psf_maglim_map_max#

Connection for output dataset.

psf_maglim_map_mean#

Connection for output dataset.

psf_maglim_map_min#

Connection for output dataset.

psf_maglim_map_sum#

Connection for output dataset.

psf_maglim_map_weighted_mean#

Connection for output dataset.

psf_size_map_max#

Connection for output dataset.

psf_size_map_mean#

Connection for output dataset.

psf_size_map_min#

Connection for output dataset.

psf_size_map_sum#

Connection for output dataset.

psf_size_map_weighted_mean#

Connection for output dataset.

sky_background_map_max#

Connection for output dataset.

sky_background_map_mean#

Connection for output dataset.

sky_background_map_min#

Connection for output dataset.

sky_background_map_sum#

Connection for output dataset.

sky_background_map_weighted_mean#

Connection for output dataset.

sky_map#

Class used for declaring PipelineTask input connections.

Attributes#

namestr

The default name used to identify the dataset type.

storageClassstr

The storage class used when (un)/persisting the dataset type.

multiplebool

Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with multiple=True with the same dimensions may want to implement PipelineTaskConnections.adjustQuantum to ensure those datasets are consistent (i.e. zip-iterable) in PipelineTask.runQuantum and notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.

dimensionsiterable of str

The lsst.daf.butler.Butler lsst.daf.butler.Registry dimensions used to identify the dataset type identified by the specified name.

deferLoadbool

Indicates that this dataset type will be loaded as a lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.

minimumbool

Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of PipelineTaskConnections.adjustQuantum, which raises NoWorkFound if the minimum is not met for Input connections (causing the quantum to be pruned, skipped, or never created, depending on the context), and FileNotFoundError for PrerequisiteInput connections (causing QuantumGraph generation to fail). PipelineTask implementations may provide custom adjustQuantum implementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.

deferGraphConstraintbool, optional

If True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.

deferBindingbool, optional

If True, the dataset will not be automatically included in the pipeline graph, deferGraphConstraint is implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.

Raises#

TypeError

Raised if minimum is greater than one but multiple=False.

NotImplementedError

Raised if minimum is zero for a regular Input connection; this is not currently supported by our QuantumGraph generation algorithm.

sky_noise_map_max#

Connection for output dataset.

sky_noise_map_mean#

Connection for output dataset.

sky_noise_map_min#

Connection for output dataset.

sky_noise_map_sum#

Connection for output dataset.

sky_noise_map_weighted_mean#

Connection for output dataset.

visit_summaries#

Class used for declaring PipelineTask input connections.

Attributes#

namestr

The default name used to identify the dataset type.

storageClassstr

The storage class used when (un)/persisting the dataset type.

multiplebool

Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with multiple=True with the same dimensions may want to implement PipelineTaskConnections.adjustQuantum to ensure those datasets are consistent (i.e. zip-iterable) in PipelineTask.runQuantum and notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.

dimensionsiterable of str

The lsst.daf.butler.Butler lsst.daf.butler.Registry dimensions used to identify the dataset type identified by the specified name.

deferLoadbool

Indicates that this dataset type will be loaded as a lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.

minimumbool

Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of PipelineTaskConnections.adjustQuantum, which raises NoWorkFound if the minimum is not met for Input connections (causing the quantum to be pruned, skipped, or never created, depending on the context), and FileNotFoundError for PrerequisiteInput connections (causing QuantumGraph generation to fail). PipelineTask implementations may provide custom adjustQuantum implementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.

deferGraphConstraintbool, optional

If True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.

deferBindingbool, optional

If True, the dataset will not be automatically included in the pipeline graph, deferGraphConstraint is implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.

Raises#

TypeError

Raised if minimum is greater than one but multiple=False.

NotImplementedError

Raised if minimum is zero for a regular Input connection; this is not currently supported by our QuantumGraph generation algorithm.