HealSparsePropertyMapConnections#
- class lsst.pipe.tasks.healSparseMapping.HealSparsePropertyMapConnections(*, config: PipelineTaskConfig | None = None)#
Bases:
PipelineTaskConnectionsAttributes Summary
Mapping holding all connection attributes.
Class used for declaring PipelineTask input connections.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Set of dimension names that define the unit of work for this task.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Set with the names of all
InitInputconnection attributes.Set with the names of all
InitOutputconnection attributes.Class used for declaring PipelineTask input connections.
Set with the names of all
connectionTypes.Inputconnection attributes.Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Set with the names of all
Outputconnection attributes.Set with the names of all
PrerequisiteInputconnection attributes.Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Class used for declaring PipelineTask input connections.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Connection for output dataset.
Class used for declaring PipelineTask input connections.
Attributes Documentation
- allConnections: Mapping[str, BaseConnection] = {'coadd_exposures': Input(name='{coaddName}Coadd', storageClass='ExposureF', doc='Coadded exposures associated with input_maps', multiple=True, deprecated=None, _deprecation_context='', dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False, deferLoad=True, minimum=1, deferGraphConstraint=False, deferBinding=False), 'dcr_ddec_map_max': Output(name='{coaddName}Coadd_dcr_ddec_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_mean': Output(name='{coaddName}Coadd_dcr_ddec_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_min': Output(name='{coaddName}Coadd_dcr_ddec_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_sum': Output(name='{coaddName}Coadd_dcr_ddec_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_ddec_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_ddec_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_ddec', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_max': Output(name='{coaddName}Coadd_dcr_dra_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_mean': Output(name='{coaddName}Coadd_dcr_dra_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_min': Output(name='{coaddName}Coadd_dcr_dra_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_sum': Output(name='{coaddName}Coadd_dcr_dra_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_dra_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_dra_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_dra', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_max': Output(name='{coaddName}Coadd_dcr_e1_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_mean': Output(name='{coaddName}Coadd_dcr_e1_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_min': Output(name='{coaddName}Coadd_dcr_e1_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_sum': Output(name='{coaddName}Coadd_dcr_e1_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e1_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_e1_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_max': Output(name='{coaddName}Coadd_dcr_e2_map_max', storageClass='HealSparseMap', doc='Maximum-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_mean': Output(name='{coaddName}Coadd_dcr_e2_map_mean', storageClass='HealSparseMap', doc='Mean-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_min': Output(name='{coaddName}Coadd_dcr_e2_map_min', storageClass='HealSparseMap', doc='Minimum-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_sum': Output(name='{coaddName}Coadd_dcr_e2_map_sum', storageClass='HealSparseMap', doc='Sum-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'dcr_e2_map_weighted_mean': Output(name='{coaddName}Coadd_dcr_e2_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of dcr_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_max': Output(name='{coaddName}Coadd_epoch_map_max', storageClass='HealSparseMap', doc='Maximum-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_mean': Output(name='{coaddName}Coadd_epoch_map_mean', storageClass='HealSparseMap', doc='Mean-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_min': Output(name='{coaddName}Coadd_epoch_map_min', storageClass='HealSparseMap', doc='Minimum-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_sum': Output(name='{coaddName}Coadd_epoch_map_sum', storageClass='HealSparseMap', doc='Sum-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'epoch_map_weighted_mean': Output(name='{coaddName}Coadd_epoch_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of epoch', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_max': Output(name='{coaddName}Coadd_exposure_time_map_max', storageClass='HealSparseMap', doc='Maximum-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_mean': Output(name='{coaddName}Coadd_exposure_time_map_mean', storageClass='HealSparseMap', doc='Mean-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_min': Output(name='{coaddName}Coadd_exposure_time_map_min', storageClass='HealSparseMap', doc='Minimum-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_sum': Output(name='{coaddName}Coadd_exposure_time_map_sum', storageClass='HealSparseMap', doc='Sum-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'exposure_time_map_weighted_mean': Output(name='{coaddName}Coadd_exposure_time_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of exposure_time', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'input_maps': Input(name='{coaddName}Coadd_inputMap', storageClass='HealSparseMap', doc='Healsparse bit-wise coadd input maps', multiple=True, deprecated=None, _deprecation_context='', dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False, deferLoad=True, minimum=1, deferGraphConstraint=False, deferBinding=False), 'n_exposure_map_max': Output(name='{coaddName}Coadd_n_exposure_map_max', storageClass='HealSparseMap', doc='Maximum-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_mean': Output(name='{coaddName}Coadd_n_exposure_map_mean', storageClass='HealSparseMap', doc='Mean-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_min': Output(name='{coaddName}Coadd_n_exposure_map_min', storageClass='HealSparseMap', doc='Minimum-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_sum': Output(name='{coaddName}Coadd_n_exposure_map_sum', storageClass='HealSparseMap', doc='Sum-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'n_exposure_map_weighted_mean': Output(name='{coaddName}Coadd_n_exposure_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of n_exposure', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_max': Output(name='{coaddName}Coadd_psf_e1_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_mean': Output(name='{coaddName}Coadd_psf_e1_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_min': Output(name='{coaddName}Coadd_psf_e1_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_sum': Output(name='{coaddName}Coadd_psf_e1_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e1_map_weighted_mean': Output(name='{coaddName}Coadd_psf_e1_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_e1', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_max': Output(name='{coaddName}Coadd_psf_e2_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_mean': Output(name='{coaddName}Coadd_psf_e2_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_min': Output(name='{coaddName}Coadd_psf_e2_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_sum': Output(name='{coaddName}Coadd_psf_e2_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_e2_map_weighted_mean': Output(name='{coaddName}Coadd_psf_e2_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_e2', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_max': Output(name='{coaddName}Coadd_psf_maglim_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_mean': Output(name='{coaddName}Coadd_psf_maglim_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_min': Output(name='{coaddName}Coadd_psf_maglim_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_sum': Output(name='{coaddName}Coadd_psf_maglim_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_maglim_map_weighted_mean': Output(name='{coaddName}Coadd_psf_maglim_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_maglim', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_max': Output(name='{coaddName}Coadd_psf_size_map_max', storageClass='HealSparseMap', doc='Maximum-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_mean': Output(name='{coaddName}Coadd_psf_size_map_mean', storageClass='HealSparseMap', doc='Mean-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_min': Output(name='{coaddName}Coadd_psf_size_map_min', storageClass='HealSparseMap', doc='Minimum-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_sum': Output(name='{coaddName}Coadd_psf_size_map_sum', storageClass='HealSparseMap', doc='Sum-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'psf_size_map_weighted_mean': Output(name='{coaddName}Coadd_psf_size_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of psf_size', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_max': Output(name='{coaddName}Coadd_sky_background_map_max', storageClass='HealSparseMap', doc='Maximum-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_mean': Output(name='{coaddName}Coadd_sky_background_map_mean', storageClass='HealSparseMap', doc='Mean-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_min': Output(name='{coaddName}Coadd_sky_background_map_min', storageClass='HealSparseMap', doc='Minimum-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_sum': Output(name='{coaddName}Coadd_sky_background_map_sum', storageClass='HealSparseMap', doc='Sum-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_background_map_weighted_mean': Output(name='{coaddName}Coadd_sky_background_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of sky_background', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_map': Input(name='skyMap', storageClass='SkyMap', doc='Input definition of geometry/bbox and projection/wcs for coadded exposures', multiple=False, deprecated=None, _deprecation_context='', dimensions=('skymap',), isCalibration=False, deferLoad=False, minimum=1, deferGraphConstraint=False, deferBinding=False), 'sky_noise_map_max': Output(name='{coaddName}Coadd_sky_noise_map_max', storageClass='HealSparseMap', doc='Maximum-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_mean': Output(name='{coaddName}Coadd_sky_noise_map_mean', storageClass='HealSparseMap', doc='Mean-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_min': Output(name='{coaddName}Coadd_sky_noise_map_min', storageClass='HealSparseMap', doc='Minimum-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_sum': Output(name='{coaddName}Coadd_sky_noise_map_sum', storageClass='HealSparseMap', doc='Sum-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'sky_noise_map_weighted_mean': Output(name='{coaddName}Coadd_sky_noise_map_weighted_mean', storageClass='HealSparseMap', doc='Weighted mean-value map of sky_noise', multiple=False, deprecated=None, _deprecation_context='', dimensions=('tract', 'skymap', 'band'), isCalibration=False), 'visit_summaries': Input(name='finalVisitSummary', storageClass='ExposureCatalog', doc='Visit summary tables with aggregated statistics', multiple=True, deprecated=None, _deprecation_context='', dimensions=('instrument', 'visit'), isCalibration=False, deferLoad=True, minimum=1, deferGraphConstraint=False, deferBinding=False)}#
Mapping holding all connection attributes.
This is a read-only view that is automatically updated when connection attributes are added, removed, or replaced in
__init__. It is also updated after__init__completes to reflect changes ininputs,prerequisiteInputs,outputs,initInputs, andinitOutputs.
- coadd_exposures#
Class used for declaring PipelineTask input connections.
Attributes#
- name
str The default name used to identify the dataset type.
- storageClass
str The storage class used when (un)/persisting the dataset type.
- multiple
bool Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with
multiple=Truewith the same dimensions may want to implementPipelineTaskConnections.adjustQuantumto ensure those datasets are consistent (i.e. zip-iterable) inPipelineTask.runQuantumand notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.- dimensionsiterable of
str The
lsst.daf.butler.Butlerlsst.daf.butler.Registrydimensions used to identify the dataset type identified by the specified name.- deferLoad
bool Indicates that this dataset type will be loaded as a
lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.- minimum
bool Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of
PipelineTaskConnections.adjustQuantum, which raisesNoWorkFoundif the minimum is not met forInputconnections (causing the quantum to be pruned, skipped, or never created, depending on the context), andFileNotFoundErrorforPrerequisiteInputconnections (causing QuantumGraph generation to fail).PipelineTaskimplementations may provide customadjustQuantumimplementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.- deferGraphConstraint
bool, optional If
True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.- deferBinding
bool, optional If
True, the dataset will not be automatically included in the pipeline graph,deferGraphConstraintis implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.
Raises#
- TypeError
Raised if
minimumis greater than one butmultiple=False.- NotImplementedError
Raised if
minimumis zero for a regularInputconnection; this is not currently supported by our QuantumGraph generation algorithm.
- name
- dcr_ddec_map_max#
Connection for output dataset.
- dcr_ddec_map_mean#
Connection for output dataset.
- dcr_ddec_map_min#
Connection for output dataset.
- dcr_ddec_map_sum#
Connection for output dataset.
- dcr_ddec_map_weighted_mean#
Connection for output dataset.
- dcr_dra_map_max#
Connection for output dataset.
- dcr_dra_map_mean#
Connection for output dataset.
- dcr_dra_map_min#
Connection for output dataset.
- dcr_dra_map_sum#
Connection for output dataset.
- dcr_dra_map_weighted_mean#
Connection for output dataset.
- dcr_e1_map_max#
Connection for output dataset.
- dcr_e1_map_mean#
Connection for output dataset.
- dcr_e1_map_min#
Connection for output dataset.
- dcr_e1_map_sum#
Connection for output dataset.
- dcr_e1_map_weighted_mean#
Connection for output dataset.
- dcr_e2_map_max#
Connection for output dataset.
- dcr_e2_map_mean#
Connection for output dataset.
- dcr_e2_map_min#
Connection for output dataset.
- dcr_e2_map_sum#
Connection for output dataset.
- dcr_e2_map_weighted_mean#
Connection for output dataset.
- defaultTemplates = {'calexpType': '', 'coaddName': 'deep'}#
- deprecatedTemplates = {}#
- dimensions: set[str] = {'band', 'skymap', 'tract'}#
Set of dimension names that define the unit of work for this task.
Required and implied dependencies will automatically be expanded later and need not be provided.
This may be replaced or modified in
__init__to change the dimensions of the task. After__init__it will be afrozensetand may not be replaced.
- epoch_map_max#
Connection for output dataset.
- epoch_map_mean#
Connection for output dataset.
- epoch_map_min#
Connection for output dataset.
- epoch_map_sum#
Connection for output dataset.
- epoch_map_weighted_mean#
Connection for output dataset.
- exposure_time_map_max#
Connection for output dataset.
- exposure_time_map_mean#
Connection for output dataset.
- exposure_time_map_min#
Connection for output dataset.
- exposure_time_map_sum#
Connection for output dataset.
- exposure_time_map_weighted_mean#
Connection for output dataset.
- initInputs: set[str] = frozenset({})#
Set with the names of all
InitInputconnection attributes.See
inputsfor additional information.
- initOutputs: set[str] = frozenset({})#
Set with the names of all
InitOutputconnection attributes.See
inputsfor additional information.
- input_maps#
Class used for declaring PipelineTask input connections.
Attributes#
- name
str The default name used to identify the dataset type.
- storageClass
str The storage class used when (un)/persisting the dataset type.
- multiple
bool Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with
multiple=Truewith the same dimensions may want to implementPipelineTaskConnections.adjustQuantumto ensure those datasets are consistent (i.e. zip-iterable) inPipelineTask.runQuantumand notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.- dimensionsiterable of
str The
lsst.daf.butler.Butlerlsst.daf.butler.Registrydimensions used to identify the dataset type identified by the specified name.- deferLoad
bool Indicates that this dataset type will be loaded as a
lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.- minimum
bool Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of
PipelineTaskConnections.adjustQuantum, which raisesNoWorkFoundif the minimum is not met forInputconnections (causing the quantum to be pruned, skipped, or never created, depending on the context), andFileNotFoundErrorforPrerequisiteInputconnections (causing QuantumGraph generation to fail).PipelineTaskimplementations may provide customadjustQuantumimplementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.- deferGraphConstraint
bool, optional If
True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.- deferBinding
bool, optional If
True, the dataset will not be automatically included in the pipeline graph,deferGraphConstraintis implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.
Raises#
- TypeError
Raised if
minimumis greater than one butmultiple=False.- NotImplementedError
Raised if
minimumis zero for a regularInputconnection; this is not currently supported by our QuantumGraph generation algorithm.
- name
- inputs: set[str] = frozenset({'coadd_exposures', 'input_maps', 'sky_map', 'visit_summaries'})#
Set with the names of all
connectionTypes.Inputconnection attributes.This is updated automatically as class attributes are added, removed, or replaced in
__init__. Removing entries from this set will cause those connections to be removed after__init__completes, but this is supported only for backwards compatibility; new code should instead just delete the collection attributed directly. After__init__this will be afrozensetand may not be replaced.
- n_exposure_map_max#
Connection for output dataset.
- n_exposure_map_mean#
Connection for output dataset.
- n_exposure_map_min#
Connection for output dataset.
- n_exposure_map_sum#
Connection for output dataset.
- n_exposure_map_weighted_mean#
Connection for output dataset.
- name = 'epoch'#
- outputs: set[str] = frozenset({'dcr_ddec_map_max', 'dcr_ddec_map_mean', 'dcr_ddec_map_min', 'dcr_ddec_map_sum', 'dcr_ddec_map_weighted_mean', 'dcr_dra_map_max', 'dcr_dra_map_mean', 'dcr_dra_map_min', 'dcr_dra_map_sum', 'dcr_dra_map_weighted_mean', 'dcr_e1_map_max', 'dcr_e1_map_mean', 'dcr_e1_map_min', 'dcr_e1_map_sum', 'dcr_e1_map_weighted_mean', 'dcr_e2_map_max', 'dcr_e2_map_mean', 'dcr_e2_map_min', 'dcr_e2_map_sum', 'dcr_e2_map_weighted_mean', 'epoch_map_max', 'epoch_map_mean', 'epoch_map_min', 'epoch_map_sum', 'epoch_map_weighted_mean', 'exposure_time_map_max', 'exposure_time_map_mean', 'exposure_time_map_min', 'exposure_time_map_sum', 'exposure_time_map_weighted_mean', 'n_exposure_map_max', 'n_exposure_map_mean', 'n_exposure_map_min', 'n_exposure_map_sum', 'n_exposure_map_weighted_mean', 'psf_e1_map_max', 'psf_e1_map_mean', 'psf_e1_map_min', 'psf_e1_map_sum', 'psf_e1_map_weighted_mean', 'psf_e2_map_max', 'psf_e2_map_mean', 'psf_e2_map_min', 'psf_e2_map_sum', 'psf_e2_map_weighted_mean', 'psf_maglim_map_max', 'psf_maglim_map_mean', 'psf_maglim_map_min', 'psf_maglim_map_sum', 'psf_maglim_map_weighted_mean', 'psf_size_map_max', 'psf_size_map_mean', 'psf_size_map_min', 'psf_size_map_sum', 'psf_size_map_weighted_mean', 'sky_background_map_max', 'sky_background_map_mean', 'sky_background_map_min', 'sky_background_map_sum', 'sky_background_map_weighted_mean', 'sky_noise_map_max', 'sky_noise_map_mean', 'sky_noise_map_min', 'sky_noise_map_sum', 'sky_noise_map_weighted_mean'})#
Set with the names of all
Outputconnection attributes.See
inputsfor additional information.
- prerequisiteInputs: set[str] = frozenset({})#
Set with the names of all
PrerequisiteInputconnection attributes.See
inputsfor additional information.
- psf_e1_map_max#
Connection for output dataset.
- psf_e1_map_mean#
Connection for output dataset.
- psf_e1_map_min#
Connection for output dataset.
- psf_e1_map_sum#
Connection for output dataset.
- psf_e1_map_weighted_mean#
Connection for output dataset.
- psf_e2_map_max#
Connection for output dataset.
- psf_e2_map_mean#
Connection for output dataset.
- psf_e2_map_min#
Connection for output dataset.
- psf_e2_map_sum#
Connection for output dataset.
- psf_e2_map_weighted_mean#
Connection for output dataset.
- psf_maglim_map_max#
Connection for output dataset.
- psf_maglim_map_mean#
Connection for output dataset.
- psf_maglim_map_min#
Connection for output dataset.
- psf_maglim_map_sum#
Connection for output dataset.
- psf_maglim_map_weighted_mean#
Connection for output dataset.
- psf_size_map_max#
Connection for output dataset.
- psf_size_map_mean#
Connection for output dataset.
- psf_size_map_min#
Connection for output dataset.
- psf_size_map_sum#
Connection for output dataset.
- psf_size_map_weighted_mean#
Connection for output dataset.
- sky_background_map_max#
Connection for output dataset.
- sky_background_map_mean#
Connection for output dataset.
- sky_background_map_min#
Connection for output dataset.
- sky_background_map_sum#
Connection for output dataset.
- sky_background_map_weighted_mean#
Connection for output dataset.
- sky_map#
Class used for declaring PipelineTask input connections.
Attributes#
- name
str The default name used to identify the dataset type.
- storageClass
str The storage class used when (un)/persisting the dataset type.
- multiple
bool Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with
multiple=Truewith the same dimensions may want to implementPipelineTaskConnections.adjustQuantumto ensure those datasets are consistent (i.e. zip-iterable) inPipelineTask.runQuantumand notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.- dimensionsiterable of
str The
lsst.daf.butler.Butlerlsst.daf.butler.Registrydimensions used to identify the dataset type identified by the specified name.- deferLoad
bool Indicates that this dataset type will be loaded as a
lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.- minimum
bool Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of
PipelineTaskConnections.adjustQuantum, which raisesNoWorkFoundif the minimum is not met forInputconnections (causing the quantum to be pruned, skipped, or never created, depending on the context), andFileNotFoundErrorforPrerequisiteInputconnections (causing QuantumGraph generation to fail).PipelineTaskimplementations may provide customadjustQuantumimplementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.- deferGraphConstraint
bool, optional If
True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.- deferBinding
bool, optional If
True, the dataset will not be automatically included in the pipeline graph,deferGraphConstraintis implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.
Raises#
- TypeError
Raised if
minimumis greater than one butmultiple=False.- NotImplementedError
Raised if
minimumis zero for a regularInputconnection; this is not currently supported by our QuantumGraph generation algorithm.
- name
- sky_noise_map_max#
Connection for output dataset.
- sky_noise_map_mean#
Connection for output dataset.
- sky_noise_map_min#
Connection for output dataset.
- sky_noise_map_sum#
Connection for output dataset.
- sky_noise_map_weighted_mean#
Connection for output dataset.
- visit_summaries#
Class used for declaring PipelineTask input connections.
Attributes#
- name
str The default name used to identify the dataset type.
- storageClass
str The storage class used when (un)/persisting the dataset type.
- multiple
bool Indicates if this connection should expect to contain multiple objects of the given dataset type. Tasks with more than one connection with
multiple=Truewith the same dimensions may want to implementPipelineTaskConnections.adjustQuantumto ensure those datasets are consistent (i.e. zip-iterable) inPipelineTask.runQuantumand notify the execution system as early as possible of outputs that will not be produced because the corresponding input is missing.- dimensionsiterable of
str The
lsst.daf.butler.Butlerlsst.daf.butler.Registrydimensions used to identify the dataset type identified by the specified name.- deferLoad
bool Indicates that this dataset type will be loaded as a
lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.- minimum
bool Minimum number of datasets required for this connection, per quantum. This is checked in the base implementation of
PipelineTaskConnections.adjustQuantum, which raisesNoWorkFoundif the minimum is not met forInputconnections (causing the quantum to be pruned, skipped, or never created, depending on the context), andFileNotFoundErrorforPrerequisiteInputconnections (causing QuantumGraph generation to fail).PipelineTaskimplementations may provide customadjustQuantumimplementations for more fine-grained or configuration-driven constraints, as long as they are compatible with this minium.- deferGraphConstraint
bool, optional If
True, do not include this dataset type’s existence in the initial query that starts the QuantumGraph generation process. This can be used to make QuantumGraph generation faster by avoiding redundant datasets, and in certain cases it can (along with careful attention to which tasks are included in the same QuantumGraph) be used to work around the QuantumGraph generation algorithm’s inflexible handling of spatial overlaps. This option has no effect when the connection is not an overall input of the pipeline (or subset thereof) for which a graph is being created, and it never affects the ordering of quanta.- deferBinding
bool, optional If
True, the dataset will not be automatically included in the pipeline graph,deferGraphConstraintis implied. The custom QuantumGraphBuilder is required to bind it and add a corresponding edge to the pipeline graph. This option allows to have the same dataset type as both input and output of a quantum.
Raises#
- TypeError
Raised if
minimumis greater than one butmultiple=False.- NotImplementedError
Raised if
minimumis zero for a regularInputconnection; this is not currently supported by our QuantumGraph generation algorithm.
- name