WriteSourceTableTask#
- class lsst.pipe.tasks.postprocess.WriteSourceTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#
Bases:
PipelineTaskWrite source table to DataFrame Parquet format.
Methods Summary
run(catalog, visit, detector, **kwargs)Convert
srccatalog to an Astropy table.runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.Methods Documentation
- run(catalog, visit, detector, **kwargs)#
Convert
srccatalog to an Astropy table.Parameters#
- catalog:
afwTable.SourceCatalog catalog to be converted
- visit, detector:
int Visit and detector ids to be added as columns.
- **kwargs
Additional keyword arguments are ignored as a convenience for subclasses that pass the same arguments to several different methods.
Returns#
- result
Struct tableastropy.table.Tableversion of the input catalog
- catalog:
- runQuantum(butlerQC, inputRefs, outputRefs)#
Do butler IO and transform to provide in memory objects for tasks
runmethod.Parameters#
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC