BarPlot#
- class lsst.analysis.tools.actions.plot.BarPlot(*args, **kw)#
Bases:
PlotActionA plotting tool which can take multiple keyed data inputs and can create one or more bar graphs.
Attributes Summary
Color map used for bar lines.
A configurable dict describing the panels to be plotted, and the bar graphs for each panel.
Methods Summary
__call__(data, **kwargs)Call self as a function.
Return the schema an
AnalysisActionexpects to be present in the arguments supplied to the __call__ method.makePlot(data[, plotInfo])Make an N-panel plot with a user-configurable number of bar graphs displayed in each panel.
Attributes Documentation
- cmap#
Color map used for bar lines. All types available via
plt.cmmay be used. A number of custom color maps are also defined:newtab10,bright,vibrant. (str, default'newtab10')
- panels#
A configurable dict describing the panels to be plotted, and the bar graphs for each panel. (
ConfigDict, default{})
Methods Documentation
- __call__(data: MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping], **kwargs) Mapping[str, Figure] | Figure#
Call self as a function.
- getInputSchema() Iterable[tuple[str, type[ndarray[tuple[Any, ...], dtype[_ScalarT]]] | type[Scalar] | type[HealSparseMap] | type[Tensor] | type[Mapping]]]#
Return the schema an
AnalysisActionexpects to be present in the arguments supplied to the __call__ method.Returns#
- result
KeyedDataSchema The schema this action requires to be present when calling this action, keys are unformatted.
- result
- makePlot(data: MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping], plotInfo: Mapping[str, str] = None, **kwargs) Figure#
Make an N-panel plot with a user-configurable number of bar graphs displayed in each panel.
Parameters#
- data
KeyedData The catalog to plot the points from.
- plotInfo
dict An optional dictionary of information about the data being plotted with keys:
"run"Output run for the plots (
str)."tractTableType"Table from which results are taken (
str)."plotName"Output plot name (
str)"SN"The global signal-to-noise data threshold (
float)"skymap"The type of skymap used for the data (
str)."tract"The tract that the data comes from (
int)."bands"The bands used for this data (
strorlist)."visit"The visit that the data comes from (
int)
Returns#
- fig
matplotlib.figure.Figure The resulting figure.
- data