ThresholdSelector#
- class lsst.analysis.tools.actions.vector.ThresholdSelector(*args, **kw)#
Bases:
SelectorBaseReturn a mask corresponding to an applied threshold.
Attributes Summary
Operator name.
Key to use when populating plot info, ignored if empty string (
str, default'')Threshold to apply.
Name of column (
str)Methods Summary
__call__(data, **kwargs)Call self as a function.
Return the schema an
AnalysisActionexpects to be present in the arguments supplied to the __call__ method.Attributes Documentation
- op#
Operator name. (
str)
- plotLabelKey#
Key to use when populating plot info, ignored if empty string (
str, default'')
- threshold#
Threshold to apply. (
float)
- vectorKey#
Name of column (
str)
Methods Documentation
- __call__(data: MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping], **kwargs) ndarray[tuple[Any, ...], dtype[_ScalarT]]#
Call self as a function.
- getInputSchema() Iterable[tuple[str, type[ndarray[tuple[Any, ...], dtype[_ScalarT]]] | type[Scalar] | type[HealSparseMap] | type[Tensor] | type[Mapping]]]#
Return the schema an
AnalysisActionexpects to be present in the arguments supplied to the __call__ method.Returns#
- result
KeyedDataSchema The schema this action requires to be present when calling this action, keys are unformatted.
- result