ScatterPlotStatsAction#

class lsst.analysis.tools.actions.plot.ScatterPlotStatsAction(*args, **kw)#

Bases: KeyedDataAction

Calculates the statistics needed for the scatter plot with two hists.

Attributes Summary

fluxType

Vector key to use to compute signal to noise ratio (str, default '{band}_psfFlux')

highSNSelector

Selector used to determine high SN Objects (SnSelector, default lsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=2700.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))

lowSNSelector

Selector used to determine low SN Objects (SnSelector, default lsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=500.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))

prefix

Prefix for all output fields; will use self.identity if None (str, default None)

suffix

Suffix for all output fields (str, default '')

vectorKey

Vector on which to compute statistics (str)

Methods Summary

__call__(data, **kwargs)

Call self as a function.

getInputSchema(**kwargs)

Return the schema an AnalysisAction expects to be present in the arguments supplied to the __call__ method.

getOutputSchema()

Return the schema an AnalysisAction will produce, if the __call__ method returns KeyedData, otherwise this may return None.

Attributes Documentation

fluxType#

Vector key to use to compute signal to noise ratio (str, default '{band}_psfFlux')

highSNSelector#

Selector used to determine high SN Objects (SnSelector, default lsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=2700.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))

lowSNSelector#

Selector used to determine low SN Objects (SnSelector, default lsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=500.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))

prefix#

Prefix for all output fields; will use self.identity if None (str, default None)

suffix#

Suffix for all output fields (str, default '')

vectorKey#

Vector on which to compute statistics (str)

Methods Documentation

__call__(data: MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping], **kwargs) MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping]#

Call self as a function.

getInputSchema(**kwargs) Iterable[tuple[str, type[ndarray[tuple[Any, ...], dtype[_ScalarT]]] | type[Scalar] | type[HealSparseMap] | type[Tensor] | type[Mapping]]]#

Return the schema an AnalysisAction expects to be present in the arguments supplied to the __call__ method.

Returns#

resultKeyedDataSchema

The schema this action requires to be present when calling this action, keys are unformatted.

getOutputSchema() Iterable[tuple[str, type[ndarray[tuple[Any, ...], dtype[_ScalarT]]] | type[Scalar] | type[HealSparseMap] | type[Tensor] | type[Mapping]]]#

Return the schema an AnalysisAction will produce, if the __call__ method returns KeyedData, otherwise this may return None.

Returns#

resultKeyedDataSchema or None

The schema this action will produce when returning from call. This will be unformatted if any templates are present. Should return None if action does not return KeyedData.