ScatterPlotStatsAction#
- class lsst.analysis.tools.actions.plot.ScatterPlotStatsAction(*args, **kw)#
Bases:
KeyedDataActionCalculates the statistics needed for the scatter plot with two hists.
Attributes Summary
Vector key to use to compute signal to noise ratio (
str, default'{band}_psfFlux')Selector used to determine high SN Objects (
SnSelector, defaultlsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=2700.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))Selector used to determine low SN Objects (
SnSelector, defaultlsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=500.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))Prefix for all output fields; will use self.identity if None (
str, defaultNone)Suffix for all output fields (
str, default'')Vector on which to compute statistics (
str)Methods Summary
__call__(data, **kwargs)Call self as a function.
getInputSchema(**kwargs)Return the schema an
AnalysisActionexpects to be present in the arguments supplied to the __call__ method.Return the schema an
AnalysisActionwill produce, if the__call__method returnsKeyedData, otherwise this may return None.Attributes Documentation
- fluxType#
Vector key to use to compute signal to noise ratio (
str, default'{band}_psfFlux')
- highSNSelector#
Selector used to determine high SN Objects (
SnSelector, defaultlsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=2700.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))
- lowSNSelector#
Selector used to determine low SN Objects (
SnSelector, defaultlsst.analysis.tools.actions.vector.selectors.SnSelector(plotLabelKey='', fluxType='{band}_psfFlux', threshold=500.0, maxSN=1000000.0, uncertaintySuffix='Err', bands=[]))
- prefix#
Prefix for all output fields; will use self.identity if None (
str, defaultNone)
- suffix#
Suffix for all output fields (
str, default'')
- vectorKey#
Vector on which to compute statistics (
str)
Methods Documentation
- __call__(data: MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping], **kwargs) MutableMapping[str, ndarray[tuple[Any, ...], dtype[_ScalarT]] | Scalar | HealSparseMap | Tensor | Mapping]#
Call self as a function.
- getInputSchema(**kwargs) Iterable[tuple[str, type[ndarray[tuple[Any, ...], dtype[_ScalarT]]] | type[Scalar] | type[HealSparseMap] | type[Tensor] | type[Mapping]]]#
Return the schema an
AnalysisActionexpects to be present in the arguments supplied to the __call__ method.Returns#
- result
KeyedDataSchema The schema this action requires to be present when calling this action, keys are unformatted.
- result
- getOutputSchema() Iterable[tuple[str, type[ndarray[tuple[Any, ...], dtype[_ScalarT]]] | type[Scalar] | type[HealSparseMap] | type[Tensor] | type[Mapping]]]#
Return the schema an
AnalysisActionwill produce, if the__call__method returnsKeyedData, otherwise this may return None.Returns#
- result
KeyedDataSchemaor None The schema this action will produce when returning from call. This will be unformatted if any templates are present. Should return None if action does not return
KeyedData.
- result